Combining Supervised and Unsupervised Lexical Knowledge Methods for Word Sense Disambiguation
نویسندگان
چکیده
This work combines a set of available techniques – which could be further extended – to perform noun sense disambiguation. We use several unsupervised techniques (Rigau et al., 1997) that draw knowledge from a variety of sources. In addition, we also apply a supervised technique in order to show that supervised and unsupervised methods can be combined to obtain better results. This paper tries to prove that using an appropriate method to combine those heuristics we can disambiguate words in free running text with reasonable precision.
منابع مشابه
Combining Collocations, Lexical and Encyclopedic Knowledge for Metonymy Resolution
This paper presents a supervised method for resolving metonymies. We enhance a commonly used feature set with features extracted based on collocation information from corpora, generalized using lexical and encyclopedic knowledge to determine the preferred sense of the potentially metonymic word using methods from unsupervised word sense disambiguation. The methodology developed addresses one is...
متن کاملUnsupervised WSD based on Automatically Retrieved Examples: The Importance of Bias
This paper explores the large-scale acquisition of sense-tagged examples for Word Sense Disambiguation (WSD). We have applied the “WordNet monosemous relatives” method to construct automatically a web corpus that we have used to train disambiguation systems. The corpus-building process has highlighted important factors, such as the distribution of senses (bias). The corpus has been used to trai...
متن کاملDomain Kernels for Word Sense Disambiguation
In this paper we present a supervised Word Sense Disambiguation methodology, that exploits kernel methods to model sense distinctions. In particular a combination of kernel functions is adopted to estimate independently both syntagmatic and domain similarity. We defined a kernel function, namely the Domain Kernel, that allowed us to plug “external knowledge” into the supervised learning process...
متن کاملAn Insight into Word Sense Disambiguation Techniques
This paper presents various techniques used in the area of Word Sense Disambiguation (WSD). There are a number of techniques such as: Knowledge based approaches, which use the knowledge encoded in Lexical resources; Supervised Machine Leaning methods in which the classifier is made to learn from previously semantically annotated corpus; Unsupervised approaches that form cluster occurrences of w...
متن کاملCombining Supervised-Unsupervised Methods for Word Sense Disambiguation
This paper presents a method to combine two unsupervised methods (Specification Marks, Conceptual Density) and one supervised (Maximum Entropy) for the automatic resolution of lexical ambiguity of nouns in English texts. The main objective is to improved the accuracy of knowledge-based methods with statistical information supplied by the corpus-based method. We explore a way of combining the cl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computers and the Humanities
دوره 34 شماره
صفحات -
تاریخ انتشار 2000